该文章记录了我如何逆向网易云并制作一个简易的播放器(鸽了)

逆向网易云

用浏览器打开网易云的网站,随意挑选一首歌曲进行播放,同时检查网络选项卡中的响应。我们能看到媒体类型中有一个 .m4a 文件。直接用 Python 的 requests 爬取下来进行播放,够厚道,爬下来就能听。


当然在页面源代码里找这个 .m4a 文件是找不到的,不然也不会说要逆向网易云了。我们该如何找到这个 .m4a 文件的 URL 呢?继续看看网络选项卡里的请求:

赫然出现这么一个请求,返回的 JSON 数据中有 .m4a 的链接。嗯,就是你了!看看负载:

csrf_token 为空,重点是表单数据的 paramsencSecKey。其中的内容都是一大串反正不是明文的东西,那么逆向的目标就是找到这两个参数的生成方式。

原本想要直接在源代码里一个个找过去这两个参数,后来突然想到客户端反正都会朝 https://music.163.com/weapi/song/enhance/player/url/v1?csrf_token= 发送请求,那么直接在 XHR / 提取断点里选择所有包含着 v1?csrf_token= 的 URL 不就行了。

关注 arguments 的构造此时成为了我们的目标。

用调用堆栈陆续向上查看,发现 paramsencSecKey 依旧是加密过后的。哎,加把劲吧,继续向上查看。

一直到这一步…… 观察其前面的代码能发现一个非常有意思的事情:

  1. 变量 bKC1x 被赋值
  2. e1x.data 被赋值时,bKC1x 被用到了,参数中还赫然写着 paramsencSecKey
  3. 根据我们之前查看的调用堆栈,chF5K(X2x, e1x) 的第二个参数必定是 paramsencSecKey 的组合

这说明什么?说明 bKC1x 就是生成 paramsencSecKey 的关键!我们仔细分析一下它的构造:

js
1
var bKC1x = window.asrsea(JSON.stringify(i1x), bvh3x(["流泪", "强"]), bvh3x(Rf5k.md), bvh3x(["爱心", "女孩", "惊恐", "大笑"]));

其中第三个参数所使用的 Rf5k.md 的内容如下:

很想吐槽…… 这些字符串的意义是什么???

bKC1x 本身会生成一个字典,其中包含 encTextencSecKey 两个键。而屡次出现的 bvh3x() 函数的构造如下:

js
1
2
3
4
5
6
7
var bvh3x = function(chL5Q) {
var m1x = [];
j1x.bg2x(chL5Q, function(chK5P) {
m1x.push(Rf5k.emj[chK5P])
});
return m1x.join("")
};

它的运作差不多是这样子的。

Rf5k.emj 是一个字典,构造非常激寒:

…… 谁来告诉我这些键到底都是什么意思???

也就是说 bvh3x() 函数接收参数,按照每个元素的字符串、对比 Rf5k.emj 字典中的键来返回对应的值,最后拼接成一个列表。

知道了 bKC1x 中后三个参数的生成方式,我们便只需要知道第一个参数 ——JSON.stringify(i1x)—— 是什么来头的了:

手到擒来,这个 id 不就是歌曲 id 么?!

参数已经全部知晓,最后要看网易云如何加密它们。window.asrsea() 函数作为加密这些参数的老大哥,它的构造如下:

js
1
2
3
4
5
6
7
8
function d(d, e, f, g) {
var h = {}
, i = a(16);
return h.encText = b(d, g),
h.encText = b(h.encText, i),
h.encSecKey = c(i, e, f),
h
}

d() 函数需要好好说道说道。接收的四个参数我们已述说过,这里不废话了。d() 先创建了一个空字典 h,接着创建了一个 i。要知道 i 的值,我们需要知道 a() 的内容:

js
1
2
3
4
5
6
7
8
function a(a) {
var d, e, b = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789", c = "";
for (d = 0; a > d; d += 1)
e = Math.random() * b.length,
e = Math.floor(e),
c += b.charAt(e);
return c
}
  • 变量 deb 都是字符串
  • for 循环中 d 变成整数 0,每次循环加 1,直到 a 的值,也就是上面 d() 函数中传入的整数 16
  • e 在每次循环都是一个随机数,有着 b 的长度,并且会被 Math.floor() 函数取整
  • c 是一个空字符串,每次循环都会被 b 的第 e 个字符所填充

用人话来说便是:a() 函数会生成一个长度为 16 的随机字符串

回到 d() 函数,h.encText 的值是 b(d, g),而 b() 函数的构造如下:

js
1
2
3
4
5
6
7
8
9
10
function b(a, b) {
var c = CryptoJS.enc.Utf8.parse(b)
, d = CryptoJS.enc.Utf8.parse("0102030405060708")
, e = CryptoJS.enc.Utf8.parse(a)
, f = CryptoJS.AES.encrypt(e, c, {
iv: d,
mode: CryptoJS.mode.CBC
});
return f.toString()
}

CryptoJS 是一个 JavaScript 的加密算法库,这里不做过多介绍,后面会讲到如何引用。

该函数先是声明了变量 cde 这三个由不同的值被 UTF-8 编码后的字符串。接着声明了变量 f —— 一个由 AES.CBC 模式加密的 e —— 其密钥为 c、偏移量为 d。返回的 f 的字符串形式最终变成了我们的 encText

值得注意的是,在 d() 函数里,h.encText被塞进 b() 函数里加密了一次。

h.encSecKeyc() 函数生成,它的构造如下:

js
1
2
3
4
5
6
function c(a, b, c) {
var d, e;
return setMaxDigits(131),
d = new RSAKeyPair(b,"",c),
e = encryptedString(d, a)
}

c() 函数里,先是调用了 setMaxDigits() 函数;这个函数接收一个需要加密的字符串 a,一个公钥 b,以及生成 RSA 密钥对所需的另一个参数 c。它先是使用 setMaxDigits() 函数设置了 BigInt 可操作的最大位数为 131。然后使用提供的公钥 b 和参数 c 生成 RSA 密钥对 d。最后,它使用生成的密钥对加密了字符串 a

问题又双叒叕来了,什么是 setMaxDigits()?什么是 BigInt?莫急,再再再来看一眼网易云的源代码:

setMaxDigits() 和以上提到的函数们有一个天大的区别:它是全局函数,无论在哪里都能被调用。而这种全局函数的定义在网易云的源代码中只有一处:第 89 行。我们可以直接把这第 89 行的内容全部复制粘贴下来使用。

展开
js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
function RSAKeyPair(a, b, c) {
this.e = biFromHex(a),
this.d = biFromHex(b),
this.m = biFromHex(c),
this.chunkSize = 2 * biHighIndex(this.m),
this.radix = 16,
this.barrett = new BarrettMu(this.m)
}
function twoDigit(a) {
return (10 > a ? "0" : "") + String(a)
}
function encryptedString(a, b) {
for (var f, g, h, i, j, k, l, c = new Array, d = b.length, e = 0; d > e; )
c[e] = b.charCodeAt(e),
e++;
for (; 0 != c.length % a.chunkSize; )
c[e++] = 0;
for (f = c.length,
g = "",
e = 0; f > e; e += a.chunkSize) {
for (j = new BigInt,
h = 0,
i = e; i < e + a.chunkSize; ++h)
j.digits[h] = c[i++],
j.digits[h] += c[i++] << 8;
k = a.barrett.powMod(j, a.e),
l = 16 == a.radix ? biToHex(k) : biToString(k, a.radix),
g += l + " "
}
return g.substring(0, g.length - 1)
}
function decryptedString(a, b) {
var e, f, g, h, c = b.split(" "), d = "";
for (e = 0; e < c.length; ++e)
for (h = 16 == a.radix ? biFromHex(c[e]) : biFromString(c[e], a.radix),
g = a.barrett.powMod(h, a.d),
f = 0; f <= biHighIndex(g); ++f)
d += String.fromCharCode(255 & g.digits[f], g.digits[f] >> 8);
return 0 == d.charCodeAt(d.length - 1) && (d = d.substring(0, d.length - 1)),
d
}
function setMaxDigits(a) {
maxDigits = a,
ZERO_ARRAY = new Array(maxDigits);
for (var b = 0; b < ZERO_ARRAY.length; b++)
ZERO_ARRAY[b] = 0;
bigZero = new BigInt,
bigOne = new BigInt,
bigOne.digits[0] = 1
}
function BigInt(a) {
this.digits = "boolean" == typeof a && 1 == a ? null : ZERO_ARRAY.slice(0),
this.isNeg = !1
}
function biFromDecimal(a) {
for (var d, e, f, b = "-" == a.charAt(0), c = b ? 1 : 0; c < a.length && "0" == a.charAt(c); )
++c;
if (c == a.length)
d = new BigInt;
else {
for (e = a.length - c,
f = e % dpl10,
0 == f && (f = dpl10),
d = biFromNumber(Number(a.substr(c, f))),
c += f; c < a.length; )
d = biAdd(biMultiply(d, lr10), biFromNumber(Number(a.substr(c, dpl10)))),
c += dpl10;
d.isNeg = b
}
return d
}
function biCopy(a) {
var b = new BigInt(!0);
return b.digits = a.digits.slice(0),
b.isNeg = a.isNeg,
b
}
function biFromNumber(a) {
var c, b = new BigInt;
for (b.isNeg = 0 > a,
a = Math.abs(a),
c = 0; a > 0; )
b.digits[c++] = a & maxDigitVal,
a >>= biRadixBits;
return b
}
function reverseStr(a) {
var c, b = "";
for (c = a.length - 1; c > -1; --c)
b += a.charAt(c);
return b
}
function biToString(a, b) {
var d, e, c = new BigInt;
for (c.digits[0] = b,
d = biDivideModulo(a, c),
e = hexatrigesimalToChar[d[1].digits[0]]; 1 == biCompare(d[0], bigZero); )
d = biDivideModulo(d[0], c),
digit = d[1].digits[0],
e += hexatrigesimalToChar[d[1].digits[0]];
return (a.isNeg ? "-" : "") + reverseStr(e)
}
function biToDecimal(a) {
var c, d, b = new BigInt;
for (b.digits[0] = 10,
c = biDivideModulo(a, b),
d = String(c[1].digits[0]); 1 == biCompare(c[0], bigZero); )
c = biDivideModulo(c[0], b),
d += String(c[1].digits[0]);
return (a.isNeg ? "-" : "") + reverseStr(d)
}
function digitToHex(a) {
var b = 15
, c = "";
for (i = 0; 4 > i; ++i)
c += hexToChar[a & b],
a >>>= 4;
return reverseStr(c)
}
function biToHex(a) {
var d, b = "";
for (biHighIndex(a),
d = biHighIndex(a); d > -1; --d)
b += digitToHex(a.digits[d]);
return b
}
function charToHex(a) {
var h, b = 48, c = b + 9, d = 97, e = d + 25, f = 65, g = 90;
return h = a >= b && c >= a ? a - b : a >= f && g >= a ? 10 + a - f : a >= d && e >= a ? 10 + a - d : 0
}
function hexToDigit(a) {
var d, b = 0, c = Math.min(a.length, 4);
for (d = 0; c > d; ++d)
b <<= 4,
b |= charToHex(a.charCodeAt(d));
return b
}
function biFromHex(a) {
var d, e, b = new BigInt, c = a.length;
for (d = c,
e = 0; d > 0; d -= 4,
++e)
b.digits[e] = hexToDigit(a.substr(Math.max(d - 4, 0), Math.min(d, 4)));
return b
}
function biFromString(a, b) {
var g, h, i, j, c = "-" == a.charAt(0), d = c ? 1 : 0, e = new BigInt, f = new BigInt;
for (f.digits[0] = 1,
g = a.length - 1; g >= d; g--)
h = a.charCodeAt(g),
i = charToHex(h),
j = biMultiplyDigit(f, i),
e = biAdd(e, j),
f = biMultiplyDigit(f, b);
return e.isNeg = c,
e
}
function biDump(a) {
return (a.isNeg ? "-" : "") + a.digits.join(" ")
}
function biAdd(a, b) {
var c, d, e, f;
if (a.isNeg != b.isNeg)
b.isNeg = !b.isNeg,
c = biSubtract(a, b),
b.isNeg = !b.isNeg;
else {
for (c = new BigInt,
d = 0,
f = 0; f < a.digits.length; ++f)
e = a.digits[f] + b.digits[f] + d,
c.digits[f] = 65535 & e,
d = Number(e >= biRadix);
c.isNeg = a.isNeg
}
return c
}
function biSubtract(a, b) {
var c, d, e, f;
if (a.isNeg != b.isNeg)
b.isNeg = !b.isNeg,
c = biAdd(a, b),
b.isNeg = !b.isNeg;
else {
for (c = new BigInt,
e = 0,
f = 0; f < a.digits.length; ++f)
d = a.digits[f] - b.digits[f] + e,
c.digits[f] = 65535 & d,
c.digits[f] < 0 && (c.digits[f] += biRadix),
e = 0 - Number(0 > d);
if (-1 == e) {
for (e = 0,
f = 0; f < a.digits.length; ++f)
d = 0 - c.digits[f] + e,
c.digits[f] = 65535 & d,
c.digits[f] < 0 && (c.digits[f] += biRadix),
e = 0 - Number(0 > d);
c.isNeg = !a.isNeg
} else
c.isNeg = a.isNeg
}
return c
}
function biHighIndex(a) {
for (var b = a.digits.length - 1; b > 0 && 0 == a.digits[b]; )
--b;
return b
}
function biNumBits(a) {
var e, b = biHighIndex(a), c = a.digits[b], d = (b + 1) * bitsPerDigit;
for (e = d; e > d - bitsPerDigit && 0 == (32768 & c); --e)
c <<= 1;
return e
}
function biMultiply(a, b) {
var d, h, i, k, c = new BigInt, e = biHighIndex(a), f = biHighIndex(b);
for (k = 0; f >= k; ++k) {
for (d = 0,
i = k,
j = 0; e >= j; ++j,
++i)
h = c.digits[i] + a.digits[j] * b.digits[k] + d,
c.digits[i] = h & maxDigitVal,
d = h >>> biRadixBits;
c.digits[k + e + 1] = d
}
return c.isNeg = a.isNeg != b.isNeg,
c
}
function biMultiplyDigit(a, b) {
var c, d, e, f;
for (result = new BigInt,
c = biHighIndex(a),
d = 0,
f = 0; c >= f; ++f)
e = result.digits[f] + a.digits[f] * b + d,
result.digits[f] = e & maxDigitVal,
d = e >>> biRadixBits;
return result.digits[1 + c] = d,
result
}
function arrayCopy(a, b, c, d, e) {
var g, h, f = Math.min(b + e, a.length);
for (g = b,
h = d; f > g; ++g,
++h)
c[h] = a[g]
}
function biShiftLeft(a, b) {
var e, f, g, h, c = Math.floor(b / bitsPerDigit), d = new BigInt;
for (arrayCopy(a.digits, 0, d.digits, c, d.digits.length - c),
e = b % bitsPerDigit,
f = bitsPerDigit - e,
g = d.digits.length - 1,
h = g - 1; g > 0; --g,
--h)
d.digits[g] = d.digits[g] << e & maxDigitVal | (d.digits[h] & highBitMasks[e]) >>> f;
return d.digits[0] = d.digits[g] << e & maxDigitVal,
d.isNeg = a.isNeg,
d
}
function biShiftRight(a, b) {
var e, f, g, h, c = Math.floor(b / bitsPerDigit), d = new BigInt;
for (arrayCopy(a.digits, c, d.digits, 0, a.digits.length - c),
e = b % bitsPerDigit,
f = bitsPerDigit - e,
g = 0,
h = g + 1; g < d.digits.length - 1; ++g,
++h)
d.digits[g] = d.digits[g] >>> e | (d.digits[h] & lowBitMasks[e]) << f;
return d.digits[d.digits.length - 1] >>>= e,
d.isNeg = a.isNeg,
d
}
function biMultiplyByRadixPower(a, b) {
var c = new BigInt;
return arrayCopy(a.digits, 0, c.digits, b, c.digits.length - b),
c
}
function biDivideByRadixPower(a, b) {
var c = new BigInt;
return arrayCopy(a.digits, b, c.digits, 0, c.digits.length - b),
c
}
function biModuloByRadixPower(a, b) {
var c = new BigInt;
return arrayCopy(a.digits, 0, c.digits, 0, b),
c
}
function biCompare(a, b) {
if (a.isNeg != b.isNeg)
return 1 - 2 * Number(a.isNeg);
for (var c = a.digits.length - 1; c >= 0; --c)
if (a.digits[c] != b.digits[c])
return a.isNeg ? 1 - 2 * Number(a.digits[c] > b.digits[c]) : 1 - 2 * Number(a.digits[c] < b.digits[c]);
return 0
}
function biDivideModulo(a, b) {
var f, g, h, i, j, k, l, m, n, o, p, q, r, s, c = biNumBits(a), d = biNumBits(b), e = b.isNeg;
if (d > c)
return a.isNeg ? (f = biCopy(bigOne),
f.isNeg = !b.isNeg,
a.isNeg = !1,
b.isNeg = !1,
g = biSubtract(b, a),
a.isNeg = !0,
b.isNeg = e) : (f = new BigInt,
g = biCopy(a)),
new Array(f,g);
for (f = new BigInt,
g = a,
h = Math.ceil(d / bitsPerDigit) - 1,
i = 0; b.digits[h] < biHalfRadix; )
b = biShiftLeft(b, 1),
++i,
++d,
h = Math.ceil(d / bitsPerDigit) - 1;
for (g = biShiftLeft(g, i),
c += i,
j = Math.ceil(c / bitsPerDigit) - 1,
k = biMultiplyByRadixPower(b, j - h); -1 != biCompare(g, k); )
++f.digits[j - h],
g = biSubtract(g, k);
for (l = j; l > h; --l) {
for (m = l >= g.digits.length ? 0 : g.digits[l],
n = l - 1 >= g.digits.length ? 0 : g.digits[l - 1],
o = l - 2 >= g.digits.length ? 0 : g.digits[l - 2],
p = h >= b.digits.length ? 0 : b.digits[h],
q = h - 1 >= b.digits.length ? 0 : b.digits[h - 1],
f.digits[l - h - 1] = m == p ? maxDigitVal : Math.floor((m * biRadix + n) / p),
r = f.digits[l - h - 1] * (p * biRadix + q),
s = m * biRadixSquared + (n * biRadix + o); r > s; )
--f.digits[l - h - 1],
r = f.digits[l - h - 1] * (p * biRadix | q),
s = m * biRadix * biRadix + (n * biRadix + o);
k = biMultiplyByRadixPower(b, l - h - 1),
g = biSubtract(g, biMultiplyDigit(k, f.digits[l - h - 1])),
g.isNeg && (g = biAdd(g, k),
--f.digits[l - h - 1])
}
return g = biShiftRight(g, i),
f.isNeg = a.isNeg != e,
a.isNeg && (f = e ? biAdd(f, bigOne) : biSubtract(f, bigOne),
b = biShiftRight(b, i),
g = biSubtract(b, g)),
0 == g.digits[0] && 0 == biHighIndex(g) && (g.isNeg = !1),
new Array(f,g)
}
function biDivide(a, b) {
return biDivideModulo(a, b)[0]
}
function biModulo(a, b) {
return biDivideModulo(a, b)[1]
}
function biMultiplyMod(a, b, c) {
return biModulo(biMultiply(a, b), c)
}
function biPow(a, b) {
for (var c = bigOne, d = a; ; ) {
if (0 != (1 & b) && (c = biMultiply(c, d)),
b >>= 1,
0 == b)
break;
d = biMultiply(d, d)
}
return c
}
function biPowMod(a, b, c) {
for (var d = bigOne, e = a, f = b; ; ) {
if (0 != (1 & f.digits[0]) && (d = biMultiplyMod(d, e, c)),
f = biShiftRight(f, 1),
0 == f.digits[0] && 0 == biHighIndex(f))
break;
e = biMultiplyMod(e, e, c)
}
return d
}
function BarrettMu(a) {
this.modulus = biCopy(a),
this.k = biHighIndex(this.modulus) + 1;
var b = new BigInt;
b.digits[2 * this.k] = 1,
this.mu = biDivide(b, this.modulus),
this.bkplus1 = new BigInt,
this.bkplus1.digits[this.k + 1] = 1,
this.modulo = BarrettMu_modulo,
this.multiplyMod = BarrettMu_multiplyMod,
this.powMod = BarrettMu_powMod
}
function BarrettMu_modulo(a) {
var i, b = biDivideByRadixPower(a, this.k - 1), c = biMultiply(b, this.mu), d = biDivideByRadixPower(c, this.k + 1), e = biModuloByRadixPower(a, this.k + 1), f = biMultiply(d, this.modulus), g = biModuloByRadixPower(f, this.k + 1), h = biSubtract(e, g);
for (h.isNeg && (h = biAdd(h, this.bkplus1)),
i = biCompare(h, this.modulus) >= 0; i; )
h = biSubtract(h, this.modulus),
i = biCompare(h, this.modulus) >= 0;
return h
}
function BarrettMu_multiplyMod(a, b) {
var c = biMultiply(a, b);
return this.modulo(c)
}
function BarrettMu_powMod(a, b) {
var d, e, c = new BigInt;
for (c.digits[0] = 1,
d = a,
e = b; ; ) {
if (0 != (1 & e.digits[0]) && (c = this.multiplyMod(c, d)),
e = biShiftRight(e, 1),
0 == e.digits[0] && 0 == biHighIndex(e))
break;
d = this.multiplyMod(d, d)
}
return c
}
var maxDigits, ZERO_ARRAY, bigZero, bigOne, dpl10, lr10, hexatrigesimalToChar, hexToChar, highBitMasks, lowBitMasks, biRadixBase = 2, biRadixBits = 16, bitsPerDigit = biRadixBits, biRadix = 65536, biHalfRadix = biRadix >>> 1, biRadixSquared = biRadix * biRadix, maxDigitVal = biRadix - 1, maxInteger = 9999999999999998;
setMaxDigits(20),
dpl10 = 15,
lr10 = biFromNumber(1e15),
hexatrigesimalToChar = new Array("0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"),
hexToChar = new Array("0","1","2","3","4","5","6","7","8","9","a","b","c","d","e","f"),
highBitMasks = new Array(0,32768,49152,57344,61440,63488,64512,65024,65280,65408,65472,65504,65520,65528,65532,65534,65535),
lowBitMasks = new Array(0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535);

至此,整个网易云逆向的思路已清晰。我们可以开始用 Python 来实现它了。

用 JS 生成数据

既然我们已经明白了网易云的加密方式,那么我们就可以先用 JS 来生成 paramsencSecKey,然后再传到 Python 来发出请求。

我使用的是 PyCharm;你可以新建一个 .js 文件并且使用 node.exe 来运行 JS 代码。

首要的便是引入 CryptoJS,与 Python 导包一样,我们需要先下载它。在终端中输入:

bash
1
npm install crypto-js

之后便是引入它:

js
1
var CryptoJS = require("crypto-js");

接着复制粘贴之前说的那一大串全局函数以及 a()b()c()d() 函数下去。

d() 函数所需要的变量中有三个是固定的,我们可以先定义好:

js
1
2
3
key_2 = '010001';
key_3 = '00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7';
key_4 = '0CoJUm6Qyw8W8jud';

而第一个参数中歌曲的 id 是动态的,我们可以先填写一个固定的 id 进去:

js
1
key_1 = '{"ids": "[2094817741]", "level": "standard", "encodeType": "aac", "csrf_token": ""}'

最后打印一下结果:

js
1
console.log(d(key_1, key_2, key_3, key_4));

paramsencSecKey 就这么简单地生成出来了。不过仅是生成出来是不够的,我们还需要把它们传到 Python 里去。

用 Python 发出请求

为了让 Python 那边取到的数据即拿即用,我悄咪咪地加了一个函数:

js
1
2
3
4
5
6
7
function main(key) {
result = d(key, key_2, key_3, key_4);
return {
'params': result['encText'],
'encSecKey': result['encSecKey']
}
}

参数 key 的内容会在 Python 中进行修改。

那么要如何让 Python 调用这个函数呢?我们可以使用 PyExecJS 这个库:

python
1
2
3
4
import execjs

js_code = open('文件.js', mode='r', encoding='utf-8').read()
ctx = execjs.compile(js_code)

这样我们便可以调用 .js 文件中的 main() 函数了:

python
1
2
3
song_id = input('输入歌曲id:')
key = '{"ids": "[%s]", "level": "standard", "encodeType": "aac", "csrf_token": ""}' % song_id
result = ctx.call('main', key)

给网易云发送请求:

python
1
2
3
4
5
6
7
8
9
10
form_data = {
'params': result['params'],
'encSecKey': result['encSecKey']
}
response = requests.post(
url='https://music.163.com/weapi/song/enhance/player/url/v1?csrf_token=',
headers=headers, # 自己定义
data=form_data
).json()
m4a_url = response['data'][0]['url']

拿到了我们的 .m4a 链接后,该怎么做嘛…… 我想也不用多说了吧。

python
1
2
3
4
5
m4a_response = requests.get(m4a_url, headers=headers).content
if not os.path.exists('music'):
os.mkdir('music')
with open('music/%s.m4a' % song_id, mode='wb') as fp:
fp.write(m4a_response)

网易云逆向大功告成!

顺便逆向个歌曲 id 不过分吧

在网易云中,当用户进行搜索时会出现这么一个请求:https://music.163.com/weapi/search/suggest/web?csrf_token=。和 .m4a 文件请求一样,这个请求也需要 paramsencSecKey 两个参数。我们可以使用同样的方法来生成它们。

该请求会根据用户输入的关键词返回搜索结果:

python
1
2
3
title = input('请输入歌曲名:')
search_key = '{"s": "%s", "limit": "8", "csrf_token": ""}' % title
result = ctx.call('main', search_key)

然后我们就可以拿到搜索结果了:

python
1
2
3
4
5
6
response = requests.post(
url='https://music.163.com/weapi/search/suggest/web?csrf_token=',
params=result,
headers=headers
).json()
return response['result']['songs'] # 返回歌曲列表,response['result']['songs'][数字]['id']就是我们上面自己定义的song_id,完全可以串起来用